$ \huge
\int f(g(x))\frac{\mathrm{d}g}{\mathrm{d}x}\mathrm{d}x \\
$
$\huge\begin{align*}
u &= g(x) \\
\frac{\mathrm{d}u}{\mathrm{d}x} &= \frac{\mathrm{d}g}{{\mathrm{d}x}}
\\
\int f(g(x))\frac{\mathrm{d}g}{\mathrm{d}x}\mathrm{d}x
&= \int f(u)\mathrm{du}
\\
\int f(u)\mathrm{du}
&= F(g(x)) +C
\end{align*}$
The process of converting an unknown integral of $f(x)$ to a known function $g(x)$.
>[!example]
>$\huge \begin{align}
\int x\sin(x^2) \d x
\end{align} $
>$\huge \begin{align}
\let u &= x^2 \\
\let \d u &= 2x \\
\int x\sin \pa{x^2} \d x &= \int
\frac{\d{u}}{2\d{x}} \sin(u) \d x\\
&=
\frac{1}{2} \int \frac{\d{u}}{\d{x}} \sin(u) \d x\\
&=\frac{1}{2}\int\sin(u)\d u \\
&= \frac{1}{2} \cos(u) + C \\
&= \frac{1}{2} \cos\pa{x^2}
\end{align} $