> Using [[Integral U Substitution]]
$\huge \begin{align}
\int \tan \pa x \d x &=
\int \frac{\sin x}{\cos x} \d x \\
\let u &= \cos x \\
\let \d u &= -\sin x \\
&= \int \frac{\pa{-\frac{\d{u}}{\d x}}}{u}\d x \\
&= -\int u^{-1} \d{u}\\
&= -\ln \left| \cos x \right| + C\\
&= \ln \left| \cos x \right|^{-1} + C\\
&= \ln \left| \frac{1}{\cos x} \right| + C\\
&= \boxed{ \ln \left| \sec x \right| + C}
\end{align}$