$\huge \begin{align}
\int e^x \d{x} &=
e^x +C \\
\int e^{ax} \d{x} &=
\frac{1}{a}e^{ax} + C\\
\int a^x \d x &=
\frac{a^x}{\ln a} + C \\
\end{align}
$
>[!example]
>$\huge \int 2^{\pi x}\d x $
>$\huge \begin{align}
\let u &= \pi x \\
\let \d u &=\frac{\pi}{\d x} \\
\int 2^{\pi x}\d x &=
\int \frac{2^u}{\pi} \d u
\\
&= \frac{2^u}{\pi\ln 2} + C\\
&= \frac{2^{\pi x}}{\pi\ln 2} + C
\end{align}$