#math/calculus #math
$
\huge\int u\d v = uv - \int v\d u
$
## Proof
Give the [[Derivative Product Rule]] for [[Derivative|Derivatives]], we know that:
$\huge\begin{align*}
y &=u v\\
\frac{\mathrm{d} y}{\mathrm{~d} x}&=\frac{\mathrm{d}(u v)}{\mathrm{d} x}=u \frac{\mathrm{d} v}{\mathrm{~d} x}+v \frac{\mathrm{d} u}{\mathrm{~d} x}
\end{align*}$
Rearranging, we get:
$
$
[[Integration|Integrating]] both sides:
$
\int u \frac{\mathrm{d} v}{\mathrm{~d} x} \mathrm{~d} x=\int \frac{\mathrm{d}(u v)}{\mathrm{d} x} \mathrm{~d} x-\int v \frac{\mathrm{d} u}{\mathrm{~d} x} \mathrm{~d} x
$
Simplyfing:
$
\int u \frac{\mathrm{d} v}{\mathrm{~d} x} \mathrm{~d} x =
uv -\int v \mathrm{d}u $
___
## Examples
### $xe^x$
$\huge \int xe^xdx $
$\huge\begin{align*}
\int \left(u\right)dv &= uv - \int(v)dv \\
u &= x \\
du &= 1dx \\
v &= e^x \\
dv &= e^xdx \\
\\
\int xe^xdx&=xe^x-\int e^x \cdot 1dx \\
&= xe^x - (e^x + C)\\
&= e^x(x-1) + C
\end{align*}$
___
### $xsin(x)$
$ \int x\sin (x)dx $
$\begin{align*}
\int \left(u\right)dv &= uv - \int(v)du \\
u&=x\\
du &= 1dx \\
dv &= sin(x) \\
v &= -\cos x \\
\int x\sin (x)dx &=
-x\cos(x) - \int-\cos(x)dx \\
&= -x\cos (x) - (-\sin (x) + C) \\
&= \sin(x) - x\cos(x) + C
\\
\end{align*}$
___
### x^2ln(x)
$ \int x^2\ln(x) dx $
$\begin{align*}
\int \left(u\right)dv &= uv - \int(v)du \\
u &= \ln (x) \\
du &= \frac{dx}{x} \\
dv &= x^2 \\
v &= \frac{x^3}{3} \\
\int x^2\ln(x) dx &=
\ln (x)x^2 -\int\frac{x^3dx}{3x}\\
&=\frac{\ln(x)}x^3{3} - \int \frac{x^2dx}{3} \\
&=\frac{\ln(x)x^3}{3} - \frac{x^3}{9} + C \\
\end{align*}$
___
### bruh moment
$\int e^{2z} \cos\left(\frac{z}{4}\right) \mathrm{d}z$
$\begin{align*}
\int \left(u\right)dv &= uv - \int(v)du \\
u &= \cos \left(\frac{z}{4}\right)\\
\mathrm{d}u &= -\frac{1}{4}\sin\left(\frac{z}{4}\right)\mathrm{d}z \\
\mathrm{d}v&= e^{2z} \\
v &= \int e^{2z}\mathrm{d}x=\frac{1}{2}e^{2z} \\
\int e^{2z} \cos\left(\frac{z}{4}\right) \mathrm{d}z &=
\frac{1}{2}e^{2x}\cos \left(\frac{z}{4}\right) +
\int \frac{1}{2}e^{2z}\cdot \frac{1}{4}\sin\left(\frac{z}{4}\right)\mathrm{d}z \\
&= \frac{1}{2}e^{2x}\cos \left(\frac{z}{4}\right) +
\frac{1}{8}\int e^{2z}\sin\left(\frac{z}{4}\right)\mathrm{d}z \\
\\
\\
\int e^{2z}\sin\left(\frac{z}{4}\right)\mathrm{d}z &=
f\rm{d}g -\int g \mathrm{d}f \\
f &= \sin \left(\frac{z}{4} \right) \\
\mathrm{d}f &=
\frac{1}{4} \cos\left(\frac{z}{4} \right)\mathrm{d}z \\
\mathrm{d}g &= e^{2z} \\
g &= \int e^{2z} = \frac{1}{2}e^{2z} \\
\int e^{2z}\sin\left(\frac{z}{4}\right)\mathrm{d}z &=
\sin\left(\frac{z}{4} \right)e^{2z} -
\int \frac{1}{2}e^{2z}\cdot \frac{1}{4}\cos\left(\frac{z}{4}\right) \\
&= \sin\left(\frac{z}{4} \right)e^{2z} -
\frac{1}{8}\int e^{2z}\cdot \cos\left(\frac{z}{4}\right) \\
\\
\end{align*}$
$\begin{align*}
\int e^{2z} \cos\left(\frac{z}{4}\right) \mathrm{d}z
&= \frac{1}{2}e^{2x}\cos \left(\frac{z}{4}\right) +
\frac{1}{8}\int e^{2z}\sin\left(\frac{z}{4}\right)\mathrm{d}z \\
&=\frac{1}{2}e^{2x}\cos \left(\frac{z}{4}\right) + \frac{1}{8}
\left(
\sin\left(\frac{z}{4} \right)e^{2z} -
\frac{1}{8}\int e^{2z}\cdot \cos\left(\frac{z}{4}\right)
\right) \\
\text{let } h &= e^{2z}\cos \left(\frac{z}{4} \right) \\
\int h \mathrm{d}z &= \frac{1}{2}h+ \frac{1}{8}\sin\left( \frac{z}{4} \right)e^{2z} - \frac{1}{64}\int h \mathrm{d}z \\
8\int h \mathrm{d}z &= 4h+ \sin\left( \frac{z}{4} \right)e^{2z} - \frac{1}{8}\int h \mathrm{d}z \\
\frac{65}{8} \int h \mathrm{d}z &= 4h+ \sin\left( \frac{z}{4} \right)e^{2z} \\
\int h \mathrm{d}z &=
\frac{8}{65} \left(
4h+ \sin\left( \frac{z}{4} \right)e^{2z}
\right) \\
\int e^{2z}\cos\left(\frac{z}{4}\right) \mathrm{d}z &=
\frac{8}{65} \left(
4e^{2z}\cos\left(\frac{z}{4}\right) +
\sin\left( \frac{z}{4} \right)e^{2z}
\right) \\
&= \frac{8}{65}e^{2z} \left(
4\cos\left(\frac{z}{4}\right) +
\sin\left( \frac{z}{4} \right)
\right) \\
\end{align*}$
>[!example]
> #example using integration by parts along with [[Integral U Substitution]].
>$\huge \int \cos(\sqrt x)\d x $
>$\huge \begin{align}
\let a &= \sqrt{x} \\
\let \d a &= \frac{1}{2\sqrt x} \d x \\
\\
\int \cos(\sqrt x)\d x&=
\int2\sqrt{x} \cos(a)\d a \\
&=
2\int\sqrt{x} \cos(a)\d a \\
&=
2\int a \cos(a)\d a \\
\\
\let u &= a\\
\let \d u &= \d a \\
\let \d v &=\cos(a)\d a\\
\let v &= \sin(a) \\
\\
2\int a \cos(a)\d a &=
\sin(a)a - \int \sin(a)\d a \\
&=2\pa{\sin(a)a + \cos(a)} \\
&=2 \sqrt x \sin \pa{\sqrt{x}} + 2\cos \pa{\sqrt x}
\end{align}$