## Sin & Cos
The typical strategy for [[Integration|integrating]] [[Odd]] powers of [[Trigonometry|Trigonometric Functions]] is to [[Factor]] a sin or cosine out, then use the [[Pythagorean Identity]] and substitution.
>[!example]
>$\huge \int \sin ^3 (x) \d x$
>>[!check]- Solution
>>$\huge \begin{align}
>>\int \sin ^3 (x) \d x &=
>>\int \sin(x)\sin ^2 (x) \d x \\
>>&=
>>\int \sin(x)\pa{1-\cos^2 x} \d x \\
>>\\
>>\let u &=\cos(x) \\
>>\let \d u &= -\sin(x)\d x \\
>>\\
>>\int \sin(x)\pa{1-\cos^2 x} \d x &=
>>\int -\pa{1-u^2} \d u \\
>>&= \int\pa{u^2-1}\d u \\
>>&= \frac{1}{3} u^{3} - u + C\\
>>&= \boxed{\frac{1}{3} \cos^3 x - \cos x + C}
>>\end{align}$
## Tangeant
>[!example]
>$\huge \int \tan^3 (x) \d x$
>>[!check]- Solution
>>$\huge \begin{align}
>>\int \tan^3 x \d x &=
>>\int \tan(x)\tan^2(x) \d x \\
>>&=
>>\int \tan(x)\pa{\sec^2(x) - 1} \d x \\ &=
>>\int\tan(x)\sec^2(x)\d x - \int\tan (x)\d x \\ &=
>>\int\tan(x)\sec^2(x)\d x - \ln \left| \sec x\right| + C \\
>>\\
>>\let u &=\tan(x) \\
>>\d u &= \sec^2(x)\d x\\
>>
>>\cdots &=
>>\int u \d u - \ln \left| \sec x\right| + C \\
>>&= \frac{1}{2}u^2 - \ln \left| \sec x\right| + C \\
>>&= \frac{1}{2}\tan^2(x) - \ln \left| \sec x\right| + C \\
>>
>>\end{align}$
>[!example]
>$\huge \int \sec (x)\d x $
>>[!check]0 Solution
>>$\huge \begin{align}
>>\int \sec (x)\d x &=
>>\int \pa{ \sec (x)
>>\frac{\sec(x)+\tan(x)}{\sec(x)+\tan(x)}
>>}\d x
>>\\&=\int {
>>\frac{\sec^2(x)+\sec (x)\tan(x)}{\sec(x)+\tan(x)}
>>}\d x
>>\\
>>\let u &= \sec(x)+\tan(x) \\
>>\let \d u &= (\sec(x)\tan(x) + \sec^2(x))\d x
>>\\
>>\\
>>\cdots &= \int \frac{1}{u} \d u \\
>>&= \ln \left| u \right| + C\\
>>&= \boxed{
>> \ln \left| \sec(x)+\tan(x) \right| + C
>>}
>>\end{align}$