[[Universal Quantifier|For Some]] [[Bijective]] [[Linear Transformation]] $T: \R^n \to \R^m$,
the [[Inverse Function|Inverse Transformation]] of $T$ is equal to the [[Inverse Matrices|Inverse Matrix]] of the the corresponding [[Matrix]] $A$ .
An [[Inverse Matrices|Inverse Matrix]] of some [[Matrix]] $A$ is the [[Inverse Value]] under [[Matrix Product|Matrix Products]].
$A$ is invertible if [[Existential Quantifier|there exists]] another matrix $A^{-1}$ such that both multiplied is equal to [[Identity Matrix]].
$\huge A A^{-1} = I$
$ \huge A^{-1}{A \vec x} = I \vec x = \vec x $
For some $n\times n$ [[Matrix]] $A$ to be [[Inverse Function|Invertible]], it must have a [[Rank]] of $n$, its [[Reduced Row Echelon Form]] be the [[Identity Matrix]], or it has a non zero [[Determinant]].
$ \exists A^{-1} \iff \op{rank}(A)=n \iff \op{rref}(A) = I_{n} \iff \det A \neq 0 $
#### Algebraic Properties
The the inverse of the inverse of some [[Matrix]] $A$ is simply $A$
$ \huge A A^{-1} = A^{-1} A = I$
###### Inverse of a transpose
$\huge \pa{ A^{\intercal} }^{-1} = \pa{ A^{-1}}^{\intercal} $
###### Scalar Distribution
$\huge\begin{align*}
\let k &\in \R \\
\let A &\in M_{n\times n} \\
\pa{kA}^{-1} &= \frac{1}{k}A^{-1}
\end{align*}$
###### Inverse Determinant
$\huge \det\pa{ A^{-1} } = \frac{1}{\det A} $
>[!example] Young's ~~Conjecture~~ Fact
$\huge \begin{align} ABA^{-1}B^{-1} = \text{nah fam} \end{align}$
### Computing Inverses
#### $2\times 2$ Method
$\huge\begin{align*}
A &= \mat{a&b\\c&d} \\
A^{-1} &= \frac{1}{\det A} \mat{ d&-b\\-c&a} \\
&= \frac{1}{ad-bc}\mat{d&-b\\c&a}
\end{align*}$
#### Row Operation Method
$\huge\begin{align*}
A &= \mat{5&3\\1&1} \\
A\hat i &= \mat{5 \\ 1} \\
A^{-1} \hat i &= \vec v_1 \\
AA^{-1} \hat i &= A\vec{v_{1}}\\
\vec i &= A\vec v_{1} \\
&\implies \augmented{cc|c}{
5&3&1\\
1&1&0
} & \\
&\sim \mat{ 1&0& \frac{1}{2}\\0&1& -\frac{1}{2}} \\
\hat j &= A\vec v_{2}\\
&\implies \cdots \sim \augmented{cc|c}{1&0& \frac{-3}{2} \\ 0 & 1 & \frac{5}{2}}
\end{align*}$
$\huge A^{-1} = \mat{\frac{1}{2} & \frac{-3}{2} \\ \frac{-1}{2} & \frac{5}{2}}$
$\huge \augmented{c|c}{A & I} \sim \augmented{c|c}{I & A^{-1} } $
$\huge \begin{align*}
\augmented{c|c}{A & I} \sim \cdots
\sim \augmented{ccc|c}{ \vdots & \vdots & \vdots \\ 0 & 0 & 0} \iff \det{A} &= 0
\end{align*}$
#### Cofactor Method
$\huge\begin{align*}
A &= \mat{
\partial_{1} & \partial_{12} & \partial_{13}\\
\partial_{21} & \partial_{22} & \partial_{23}\\
\partial_{31} & \partial_{32} & \partial_{33}\\
}\\
A^{-1} &= \frac{1}{\det A} \mat{
C_{1,1} & C_{2,1} & C_{3, 1} \\
C_{1,2} & C_{2,2} & C_{3, 2} \\
C_{1,3} & C_{2,3} & C_{3, 3} \\
}
\end{align*}$
>[!tip] [[../../02 Areas/Math/Determinant#Computing#Cofactor Expansion|See here for computing $C_{i, j}$]]