$\huge
\begin{align}
\int \frac{1}{1+x^2}\d x &= \arctan x\\
\int \frac{1}{\sqrt{1-x^2}} \d x &= \arcsin x\\
\int \frac{1}{x\sqrt{1-x^2}} \d x &= \sec^{-1}x
\end{align}
$
## Related Formulas
$\huge
\int \frac{\d x}{a^2 + x^2} =
\frac{\arctan \frac{x}{a}}{a} + C
$