We say that a [[Unary Operation]] $-$ defind over the [[Set|set]] $S$ has the [[Involution Property]] [[Biconditional|if and only if]] [[Universal Quantifier|for all]] $a\in S$, $-(-a) = a$
$\huge \begin{align}
-: S &\to S \\
-(-a) &= a\\
(-)^{2} a &= a \\
\end{align}$
>[!tip] Thereom
>The last notation refers to the use of [[Functional Powers|functional powers]].
>A more general thereom can be proved that states that for any $n \in \N$, the following [[Identity Function|identity]] holds
>$ (-)^{2n} = \op{id}_{S} $