The kernel of a [[Homomorphism]] $f: (X, \circ)\to (Y, *)$ is the [[Subset|subset]] $\ker(f) \subseteq X$ that $f$ [[Function|maps]] to $e_Y$ ([[Identity Function|identity]] of $Y$).
$\huge \begin{align}
f: X \to Y \\
\ker(f) &= \setbuild{x \in X}{f(x) = e_{Y}}
\end{align}$
### Examples
- [[Linear Algebra]] / [[Linear Transformation|Linear Maps]] - [[Kernel (Vector Space)]]
- [[Group Homomorphism]] - [[Kernel (Groups)]]