L'Hôpital's Rule states that the [[Limits|Limit]] of any [[Function]] over another is equal to their [[Derivative|derivative]] divided over each other.
$
\huge\lim_{x\to a}
\frac{f(x)}{g(x)} = \lim_{x\to a}\frac{f'(x)}{g'(x)}
$
>[!example]
>$\huge\begin{align*}
\lim_{x\to1}\frac{\sin(\pi x)}{x^{2}-1} &=
\lim_{x\to1}
\frac{
\frac{\mathrm{d}(\sin(\pi x))}{\mathrm{d}x}
}{
\frac{\mathrm{d}(x^{2}-1)}{\mathrm{d}x}
}
\\
&=
\lim_{x\to1}
\frac{\pi\cos(\pi x)}{2x} \\
&= \frac{\pi\cos(\pi)}{2} \\
&= -\frac{\pi}{2}
\end{align*}$