A [[Linear]] combination of some [[Ordered Set]] of objects $S$ (*ex.* a [[Vector]]) upon some [[Linear]] [[Binary Operation]] is the sum: $\huge \begin{align} x_{1}s_{1}+x_{2}s_{2}+\cdots + x_{{k}}s_{k} \end{align} $ For some $x_{1}, \dots, x_{k} \in \R$. >[!example] [[Vector]] [[Linear Combination]] >$\huge \begin{align} >\let \vec{v_{1}},\vec{v_{2}}, \dots,\vec{v_{k}} &\in \R^n \\ >\let x_{1}, x_{2}, x_{k} &\in \R \\ > \vec{v_{1}}x_{1} +\vec{v_{2}}x_{2} + \dots +\vec{v_{k}}x_{k} > &=c >\end{align}$ A [[System of Linear Equations]] can always be expressed as a [[Linear Combination]] of [[Vector|Vectors]] >[!example]- >$\huge \begin{align} > v_\ang{1,1}x_{1}+v_\ang{2,1}x_{2}+v_\ang{3, 1}x_{3} &= c_{1}\\ > v_\ang{1,2}x_{1}+v_\ang{2,2}x_{2}+v_\ang{3, 2}x_{3} &= c_{1}\\ >v_\ang{1,3}x_{1}+v_\ang{2,3}x_{2}+v_\ang{3, 3}x_{3} &= c_{1} \\ >\sim \vec{v_{1}}x_{1} + \vec{v_{2}}x_{2}+\vec{v_{3}}x_{3} &=\vec c & \end{align}$ $\huge \let \vec{v_{1}},\dots,\vec{v_{m}}, \vec b \in \R^{n} $ $\huge \let x_{1}, \dots, x_{{m} }\in \R $ To solve the [[Linear Combination]] for $x_{1}, \dots, x_{{m}}$ $\huge x_{1}\vec{v_{1}} + \dots +x_{m}\vec {v_{m}}=\vec b \sim \augmented{c|c}{ \vec{v_{1} } \cdots \vec{v_{m}} & \vec b }$