A [[Function]] $T: \R^m \to \R^n$ is a [[Linear Transformation]] if:
- $\forall\vec x, \vec y \in \R^m$, $T(\vec x + \vec y) = T(\vec x) + T(\vec y)$
- $\forall \vec x, \vec y \in \R^m$, $T(k\vec x)=kT(\vec x)$
- $T(\vec 0)= \vec 0$
>[!info]- [[Geometry|Geometric]] Based Rules
>- *Straight* [[Lines]] as *Straight* [[Lines]] $\in\Rn{2+}$
>- Planes as Planes $\in \Rn{3+}$
>- Preserve the parallel nature of vectors / lines / planes $\in \Rn n$
>- Parallelograms / Parallelepipeds
>- Consistent “notching” on a line
>- $\Rn2\mapsto\Rn2$ Will have *[[../../02 Areas/Math/Determinant|relative areas]]*
>- $\Rn3\mapsto\Rn3$ Will have *[[../../02 Areas/Math/Determinant|relative volumes]]*
>- $\vec 0 \mapsto \vec 0$
The [[Composition]] between two [[Linear Transformation]] is a [[Linear Transformation]].
>[!info] [[Proof]]
>$\huge\begin{align*}
>\let T&: \Rn m \mapsto \Rn n \\
>S &: \Rn n \mapsto \Rn n
>\end{align*}$
>$\begin{align*}
>(S\circ T)\pa{\vec x_{1} + \vec x_{2}} &= S\pa{T\pa{\vec x_{1}} + T\pa{\vec x_{2}}} \\
>&= (S\circ T)\pa{\vec x_{1}}+ (S \circ T) \pa{\vec x_{2}} \\
>(S \circ T) \pa{k\vec x} &= S\pa{kT\pa{\vec x}} \\
>&= k(S\circ T)\pa{\vec x}
>\end{align*}$
Every [[Linear Transformation]] $T: \R^m \to \R^n$ has a *corresponding* [[Matrix]] $A \in M_{n\times m}$ such that $\forall \vec x \in \R^m:$ $T(\vec x)=A\vec x$.
[[Universal Quantifier|For All]] [[Linear Transformation|Linear Transformations]] $T$, there is an unique [[Logical Inverse|Inverse]] $T^{-1}$ that is also a [[Linear Transformation]].