quot;. The negation is also [[Logical Inverse|Invertible]], with the operation being its own [[Logical Inverse]]: $\huge \neg\pa{ \neg P} = P $ $ \huge \begin{align} \let n &\in \Z \\ (\neg)^{2n}(P) &= P\\ (\neg)^{2n+1}(P) &= \neg P \end{align} $ #### Truth Table | $P$ | $\neg P$ | | ----- | -------- | | *T* | **F** | | **F** | *T* |