The [[Matrix Product]] is a notion of 'multiplying' two [[Matrix|Matrices]].
The [[Matrix Product]] is a non [[Commutative]], [[Associative]] [[Binary Operation]] between a matrix $A\in M_{m\times n}$ and another $B\in M_{n\times p}$ produces another [[Matrix]] $AB\in M_{m\times n}$
$ \huge
\begin{align}
\forall A &\in M_{n\times m}, B \in M_{m \times r} \\ AB &\in M_{n\times r}
\end{align}
$
$\huge \begin{align}
\begin{split}
AB &= \mat{A\vec B_{1} A\vec B_{2}, \dots,A\vec B_{n} } \\
\pa{AB}_{i,j} &=
\sum_{k=1}^{m} a_{i,k}b_{k,j}
\end{split}
\end{align}$
Matrix products are *not* [[Commutative]], $\exists A,B \ba{ AB \ne BA}$.
$\huge
\begin{align}
\forall k&\in R \\
(kA)B &=k(AB)=kAB \\
\end{align}
$