$\huge A_{n\times m}^{\intercal} \in M_{m\times n}$ "Rotating" a [[Matrix|Matrix]] on its side / flipping all row and column values. $ \huge \begin{align} \transpose{\mat{ 1 & 2 & 3 \\ 4 & 5 &6 \\ 7 & 8 & 9}} = \mat{ 1 & 4 & 7 \\ 2 & 5 &8 \\ 3 & 6 & 9} \end{align}$ >[!info] >$\huge (AB)^\intercal = B^\intercal A^\intercal $ >[!note] > For any square [[Matrix]] $A_{n\times n}$, $\transpose{A}$ will have the same *diagonal* values as $A$. $ \begin{align} U &= \op{Col}(A)\\ U^\intercal &= \op{Nul} \left( A^\intercal \right) \end{align} $