A [[Relation]] of arithmetic such that a [[Finite]] [[Set]] of [[Integer|Integers]] (in a single [[Interval]]) is closed under addition using the [[Modulo]] [[Operation|Operator]].
Let $a, b \in \Z, m \in \N$, under [[Modular Arithmetic]], $a$ is [[Congruent]] to $b \mod m$
$\huge a \equiv b \pmod{b}
\iff m \mid b-a
$
>[!note] $\mid$ Meaning
> $a\mid n$ is shorthand for the [[Proposition]] that $a$ is divisible by $n$, or $a \mod b = 0$.
>[!note] $\pa{\op{mod}\,m}$ Meaning
>Note the $\pa{\op{mod}\, m}$ refers to the entire equation as a [[Relation]], and is there for context to say 'a is [[Congruent]] to b' underneath the system of [[Modular Arithmetic]] with the modulus $m$.
>[!example]- Example: Modular Arithmetic of a Clock
>Let $S$ be the [[Set]] of all [[Integer]] hours,
>$ \begin{align}
>11\op{pm} + 1\op{am} \equiv 23\op{h}+1\op{h} = 0\op{h} \, \pmod{24}
>\end{align} $
#### Properties
For some $a_1\equiv b_{1}, a_{2}\equiv b_{2}$ (or $a\equiv \pmod{m}$) and $k\in\Z$:
- $a + k \equiv b+k \pmod{m}$
- $ka \equiv kb \pmod{m}$
- $a_{1}+a_{2} \equiv b_{1}+b_{2} \pmod{m}$
- $a_{1}a_{2} \equiv b_{1}b_{2} \pmod{m}$
- $a^k \equiv r^k \pmod{m}$