The [[Linear Subspace]] in whose [[Image]] through a [[Matrix Product]] with $A$ is $\vec 0$.
$\huge
\begin{align}
A &\in M_{n\times n} \\
\op{Nul}(A) &= \set{\vec x \in \R^m \mid A\vec x = \vec 0}
\end{align}
$
The [[Nullspace]] of a [[Matrix]] is equal to the [[Reduced Row Echelon Form]] of said [[Matrix]].
$\huge
\op{Nul}(A) = \op{Nul}(\op{rref}(A))
$
$\huge \begin{align}
\op{rref}(A) &=
E_{1} E_{2} \cdots E_{k} A \\
A\vec x = 0 &\rightarrow\, E_{1} E_{2} \cdots E_{k} A \vec b = 0
\end{align}$
When describing a [[Matrix]] as a [[Linear Transformation]], the [[Nullspace]] is called the [[02 Areas/Math/Kernel|Kernel]].