The [[Orthogonal]] [[Set Complement|Complement]] [[Linear Subspace]] of some [[Linear Subspace]] $U$ is a [[Linear Subspace]], $U^\perp$ such that all [[Vector|Vectors]] in $U^\perp$ are [[Orthogonal]] to all [[Vector|Vectors]] in $U$.
$\huge \begin{align}
U &= \op{Col{(A)}} \\
U^\perp &= \op{Nul}\left( A^\intercal \right)
\end{align} $
$\huge
\forall U \subseteq \R^n: \dim U + \dim U^\perp = n \\
$