Projects space $\Rn{n}$ to some $\Rn{n-1}\subset \Rn{n}$
>[!important] All lines or planes you project with matrices *must* cross the origin.
>[!info] Symmetry
> $A^{\intercal}= A$
### Determinant
$\huge \det{A} = 0$
### Inverse
You cannot inverse a projection transformation.
### Using Vector Form.
For lines in $\Rn2, \Rn3$
$\huge A=
\frac{1}{\norms{\vec v}^{2}} \vec v {v}^{\intercal}
= \hat v \hat v ^{\intercal}
$
### Using Normal Form
For lines in $\Rn2$ or plane in $\Rn3$ that crosses the origin.
$\huge A =
I - \frac{1}{\norms{\vec n}^{2}}\vec n \vec n^\intercal$
$\huge\begin{align}
A\mat{ 1\\1\\0} &= A\mat{0\\0\\1} \\
A\mat{ 1\\1\\0} - A\mat{0\\0\\1} &= \vec 0\\
A\mat{1\\1\\-1} &= \vec 0 \\
A &= I - \frac{1}{\norms{\vec n}^{2}}\vec n \vec n^\intercal \\
\end{align} $
$\huge\begin{align}
\pa{I - \frac{1}{\norms{\vec n}^{2}}\vec n \vec n^\intercal }\mat{1\\1\\-1} &=\vec 0\\
\mat{1\\1\\-1} -
\pa{ \frac{1}{\norms{\vec n}^2}\vec n \vec n^\intercal }\mat{1\\1\\-1}
&= \vec 0 \\
\mat{1\\1\\-1} - \pa{ \hat n \hat n^\intercal }\mat{1\\1\\-1}
&= \vec 0
\\
\hat n \hat n^\intercal \mat{1\\1\\-1}
&= \mat{-1\\-1\\1} \\
\mat{x\\y\\z}\mat{x&y&z}=\mat{-1\\-1\\1}
\end{align}
$
$\huge \begin{align}
\end{align}$