The term for an operation between two [[Vector|Vectors]] $\vec a, \vec b$, which is equal to the [[Matrix Multiplication|Product]] of:
$\huge
\begin{align}
\let \vec a &\in \R^{n}\\
\let \vec b &\in \R^{m}\\
\\
\vec a \otimes \vec b &= \vec a \vec b^{\intercal}
\end{align}
$
The [[Trace]] of the [[Outer Product]] between two [[Matrix|Matrices]] $\vec u, \vec v$ is equal to the [[Inner Product]] between $\vec u, \vec v$.
$\huge
\mathrm{tr}(\vec u \otimes \vec{v}) = \braket{\vec u, \vec v}
$
>[!seealso] See Also its 'inverse': [[Inner Product]]