## [[Vector]]
Two [[Vector|vectors]] are parallel when they hold the same direction, with the magnitude / length being *negligent*.
2 [[Vector|vectors]] are parallel if they are [[Scalar]] multiples of one another.
## *Notation*
### Parallel
*Latex Symbol*: `\parallel`
$\huge{\vec{u} \parallel \vec{v}}$
## Not Parallel
*Latex Symbol*: `\nparallel`
$\huge{\vec{u} \nparallel \vec{v}}$
# Examples
## Parallel
![[../../00 Excalidraw/Parallel .excalidraw.dark.svg|center]]
$\huge \vec{u} \parallel \vec{v}$
## *Non* Parallel
![[../../00 Excalidraw/Parallel _1.excalidraw.dark.svg]]
$\huge \vec{u} \nparallel \vec{v}$
## 0 Vector
$\huge\begin{align*}
\vec{0} &= \mat{0\\0\\0} \\
\vec{u} &= \mat{2\\-1\\3}
\end{align*} $
Whether these two vectors are parallel *depends on context*, most questions will ask *What is any **nonzero** vector parallel?*
However in most contexts where we don't ignore, we say that $\vec{0}$ is parallel to any other vector.