## Volume
![[../../00 Excalidraw/Parallelepiped .excalidraw]]
Base: $\norm{\vec u \times \vec v}$
Height: $\norm{\vec w} \sin\theta$
Find the angle between $\vec w$ and the planed created with $\vec u$ and $\vec v$ ([[Planes#Getting the angle between a plane and a line|see also]]).
$\huge\begin{align*}
\vec u \times \vec v &= \vec n\\
\sin \theta &= \frac{\vec n \cdot \vec w}{\norms{\vec n}\norms{\vec w}} \\
\text{height} &= \frac{\vec n \cdot \vec w}{\norms{\vec n}\norms{\vec w}}\\
\end{align*}$
> [!definition]
The area of a parallelepiped is the [[Triple Product]] between it's defining vectors:
$\huge \paren{ \vec u \times \vec v} \cdot \vec w $
>[!example]
>Let $\vec u$, $\vec v$, and $\vec w$ be non coplanar and describing a parallelepiped, what is the volume of the shape?
> $\huge\begin{align*}
\vec u &= \mat{1\\-2\\4} \\
\vec v &= \mat{-1\\0\\2} \\
\vec w &= \mat{-1\\-1\\3} \\
(\vec u \times \vec v) \cdot \vec w &= \mat{
-4-0\\
-4-2\\
0-2
} \cdot \mat{-1\\-1\\3}\\
&= 4 + 6 -6\\
&= 4
\end{align*}$
### Related shapes
>[!definition] Area of a Triangular Prism
Similar to [[Parallelogram#Finding the area of a triangle|triangles]] in $\R^2$, it is simply half the the parallelepiped
$\huge \frac{1}{2}\norm{\paren{\vec u \times \vec v} \cdot \vec w}$
>[!definition] Area of a pyramid
Just accept it.
$\huge \frac{1}{3}\norm{\paren{\vec u \times \vec v} \cdot \vec w}$
>[!definition] Area of a tetrahedron
$\huge \frac{1}{6}\norm{\paren{\vec u \times \vec v} \cdot \vec w}$