## Area
The area of a parallelogram is equal to the [[../../02 Areas/Math/Cross Product]] of two of its vectors.
![[../../00 Excalidraw/Cross Product .excalidraw.dark.svg]]
### Finding the area of a triangle
Any triangle can be duplicated into a parallelogram.
![[../../00 Excalidraw/Parallelogram _0.excalidraw.dark.svg]]
#### Finding in $\R^2$
> [!example]
> Find the area of $\triangle PQR$.
> $\triangle PQR \in \R^{2}$
> $\huge\begin{align*}
> P &= (0, 2) \\
> Q &= (3, 1) \\
> R &= (2, 4) \\\\
>
> \alpha &\in \R^{3}\\
> \alpha &: (s, t, 0) \\
> \end{align*}$
>
> $\huge\begin{align*}
> \vec u &= \proj{\alpha}{\vector{PQ}} = \mat{3\\-1\\0} \\
> \vec v &= \proj{\alpha}{\vector{PR}} =\mat{2\\2\\0} \\
>
> \end{align*}$
>
> $\huge\begin{align*}
> \vec u \times \vec v &= \mat{0\\0\\u_{x}v_{y} - u_{y}v_{x}} \\
> \norm{\vec u \times \vec v} &= \sqrt{ (u_{x}v_y-u_yv_x)^2 }\\
> &=\left|{u_{x}v_y-u_yv_x} \right|\\
> &= 8
> \end{align*}$
> [!abstract]
> In general, when finding the area of a triangle or parallelogram in $\R^2$, you can project the vectors on to any plane in $\R^3$ and compute the cross product.