A [[Penrose Inverse Matrix|Pseudo Inverse]] (or [[Penrose Inverse Matrix|Penrose Inverse]]) of some [[Matrix]] $A$ is a [[Matrix]] $A^+$ that can mimic the properties of an [[Inverse Matrices|Inverse Matrix]]
$A^+$ of any [[Orthogonal Complement Linear Subspace]] of $A$, with collapse to the [[Zero Vector]].
$\huge
\forall \vec x \in \op{Col}(A)^\perp: A^+ \vec x = \vec 0
$
$\huge
\begin{align}
\op{Col}(A)^\perp &= \op{Nul(A^+)} \\
\op{Nul} (A^\intercal) &= \op{Nul}(A^+)
\end{align}
$
$
$
$ \begin{align}
AA^+A &= AI = A \\
A^+AA^+ &= A^+I = A^+
\end{align}$
>[!example]
>$ \begin{align}
>A &= \mat{0&-1\\1&2\\2&1} \\
>A^\intercal A &= \mat{5 & 4\\4&6} \\
>A^\intercal A^{-1} &= \frac{1}{14}\mat{6&-4\\-4&5}\\
>\left( A^\intercal A \right)^{-1}A^\intercal &= \frac{1}{14}\mat{6&-4\\-4&5}\mat{0&1&2\\-1&2&1} \\
>&= \frac{1}{14} \mat{ 4 & -2 & 9 \\ -5 & 6 & -3 }
>\end{align}
>$
>[!example]