Planes are *flat surfaces* in $\R^3$.
Just like [[Lines|lines]], planes can be represented with a [[Lines#Vector Form|Vector Form]], [[Lines#Parametric Form|Parametric Form]], [[Lines#Normal Form|Normal Form]].
![[../../00 Excalidraw/Planes .excalidraw.dark.svg]]
# Representations
## Vector Form
$\huge
\alpha : (x,y,z) = P+s\vec u + t\vec v
$
*Extended from [[Lines#Vector Form|Vector form of Lines]]*
## Parametric
$\huge
\alpha: \begin{cases}
x= P_x+su_{x}+tv_{x}\\
y=P_y+su_y+tv_y\\
y=P_z+su_z+tv_z\\
\end{cases}
$
*Just vector form expanded*
## Normal Form
$\huge
\alpha : n_{x}+n_y+n_z=c
$
Where $n$ is any vector parallel to the normal of the plane.
> [!tip]
> If the coefficient in 0 in any $\R$, then the line passes through the original
> [!example]
> $ \huge \let \alpha : 3x - y - 2z = 5$
> Write $\alpha$ in vector form and in parametric form.
>
> $\huge\begin{align*}
> \perp \alpha &= \mat{3\\-1\\-2} \\
> \end{align*}$
>
> $\huge
> \text{Try } x=0, y = 0
> $
> $\huge 3(0) - 0 - 2z = 5 \iff z= -\frac{5}{2}$
> $\huge \op{switch}\perp\alpha = \mat{0\\2\\-1}$
> $\huge \op{switch}\perp\alpha = \mat{1\\3\\0}$
>
> *Vector Form*:
> $\huge \alpha : (x,y,z) = \paren{0,0,\frac{-5}{2}}
> + s\mat{1\\3\\0} + t\mat{0\\2\\-1}
> $
> *Parametric Form*:
> $\huge\alpha : \cases{
> x = 5 \\
> y=3s+2t \\
> z=-\frac{5}{2}-t
> }
> $
# Angles
## Getting the angle between a plane and a line
$\huge\begin{align*}
\alpha:& (x,y,z) = (3,6,-1) + t\mat{-11\\0\\2} +s\mat{1\\1\\1} \\
l:& (x,y,z) = (1,1,-1) +r \mat{3\\1\\2}
\end{align*}$
Find the angle $\theta_{\angle \alpha k}$
To solve these types of problems, we can use the method described [[Lines#Angle between lines using a parallel vector and a normal vector|here]].
![[../../00 Excalidraw/Planes _0.excalidraw.dark.svg]]
Convert $\alpha$ to normal form.
$\huge \mat{-1\\0\\2 }\times\mat{1\\1\\1}=\mat{2\\-3\\1} $
$\huge \alpha:2x-3y+z=-13$
$\huge\begin{align*}
\vec \alpha_{\perp} &= \mat{2\\-3\\1} \\
\vec v &\parallel l\\
\vec v &= \mat{3\\1\\2} \\
\end{align*}$
$\huge\begin{align*}
\theta_{\angle \alpha l} &= \arcsin \paren{\frac
{\vec \alpha_{\perp}\cdot \vec v}
{\norm{\vec \alpha_{\perp}}\norm{\vec v}}
} \\
\\&= 20.92\degree
\end{align*}$
## Getting the angle between two planes
To get the angle, you can simply find the angle between the two [[Normal Vector|Normal Vectors]]
$\huge
\theta_{\angle \alpha \beta } = \arccos\paren{
\frac{\vec \alpha_{\perp}\cdot \vec \beta_\perp}
{\norm{\vec \alpha_\perp}\norm{\vec \beta_\perp} }
}
$
*Since we want the smaller, if $\theta_{\angle\alpha\beta} > 90\degree$, then take the supplement (the same as [[Lines#Getting the angle between lines|Getting the angle between lines]])*