Let $P(n)$ be a [[Proposition|Propositional Statement]]. To prove [[Proof|prove]] that $P(n)$ is true [[Universal Quantifier|For All]] positive [[Integer|Integers]] $n$, we complete two steps:
- *Basis Step*: Verify that $P(1)$ is [[Truth Value|true]].
- *Induction Step*: Let $k$ be an arbitrary positive [[Integer]], prove the [[Conditional]] $P(k) \to P(k+1)$
$\huge
{\color{pink}P}(n) =\mat{
{\color{pink}P}(1)\to {\color{pink}P}(k)\to
{\color{pink}P}
(k+1)
}
$
>[!example]
>Example: Prove that:
>$
>1^3+2^3+\dots+n^2= \pa{\frac{n(n+1)}{2}}^2
>$
>
>>[!check]- Solution
>>The base step is satisfied:
>>$ 1^3 = \pa{\frac{1(1+1)}{2}}^2=1 $
>>
>>
>>
>>$
>>1^3+2^3+\dots+k^3= \pa{\frac{k(k+1)}{2}}^2
>>$
>>
>>$
>>1^3+2^3+\dots+(k+1)^3= \pa{\frac{(k+1)(k+2)}{2}}^2
>>$
>>
>>Using the value of $k$:
>>$\begin{align}
>>1^3+2^3+\dots+(k+1)^3
>>&= \pa{\frac{k(k+1)}{2}}^2+(k+1)^3\\
>>&=
>>\frac{
>>k^2(k+1)^2+4(k+1)^3
>>}{
>>4
>>}\\
>>&= \dots \\
>>&=
>>\frac{(k+1)^2(k+2)^2}{4}\\
>>&=
>>\pa{\frac{(k+1)(k+2)}{2}}^2 \\
>>\end{align}
>>$