Any [[Unit Quaternion|unit]] [[Quaternions|quaternion]] $q$ can be represented as: $\huge \begin{align} q = \cos \pa{\frac{\theta}{2}} + \hat n \sin \pa{\frac{\theta}{2}} \end{align}$ Where $\hat n$ denotes a [[Unit Quaternion|Unit]] [[Quaternion Vector]]. >[!info]- Proof >$\large i= \hat{i},j=\hat{j},k=\hat{k} $ >$\large\begin{align} > >q &= \cos \pa{\frac{\theta}{2}} + (b\hat{i}+c\hat{j}+d\hat{k})\sin\pa{\frac{\theta}{2}} \\ > >q^{*} &=\cos \pa{\frac{\theta}{2}} - (b\hat{i}+c\hat{j}+d\hat{k})\sin\pa{\frac{\theta}{2}} \\ > > >qq^{*} &=\cos^{2}\pa{\frac{\theta}{2}} + \sin^{2}\pa{\frac{\theta}{2}}\pa{b^{2}+c^{2}+d^{2}} \\ > >qq^{*} &=\cos^{2}\pa{\frac{\theta}{2}} + \sin^{2}\pa{\frac{\theta}{2}}{|\hat{n}|} \\ > >qq^{*} &= \cos^{2}\left( \frac{\theta}{2} \right) + \sin^{2}\left( \frac{\theta}{2} \right) > >\end{align}$ A rotation as a [[Linear Transformation]] about an [[Axis]] ([[Unit Vector]]) $\hat{n}$ by an angle of $\theta$ can be written as: $\huge \begin{align} L(\vec v) &= q\vec v q^{*} \end{align}$ Where $q$ is defined as the previous spelling: $\huge \begin{align} q = \cos \pa{\frac{\theta}{2}} + \hat n \sin \pa{\frac{\theta}{2}} \end{align}$ >[!warning] >Rotate $v=\braket{1,2,1}$ about $\hat n= \frac{1}{\sqrt{ 5 }} \braket{1,2,0}$. and $\theta= \frac{\pi}{3}$. > >$\huge \begin{align} >q &= \cos \frac{\pi}{6} + \frac{1}{\sqrt{ 5 }}(1i+2j) \sin \frac{\pi}{6} \\ >q^{*} &= \cos \frac{\pi}{6} - \frac{1}{\sqrt{ 5 }}(1i+2j) \sin \frac{\pi}{6} \\ > >q &= \frac{\sqrt{ 3 }}{2} + \frac{1}{2}\pa{ \frac{1}{\sqrt{ 5 }}i + \frac{2}{\sqrt{ 5 }}j }\\ > >q^{*} &= \frac{\sqrt{ 3 }}{2} - \frac{1}{2}\pa{ \frac{1}{\sqrt{ 5 }}i + \frac{2}{\sqrt{ 5 }}j } >\end{align}$ > > >$\begin{align} > >L(\vec v) &= q\vec v q^{*} \\ > >&= > >\pa{\frac{\sqrt{ 3 }}{2} + \frac{1}{2}\pa{ \frac{1}{\sqrt{ 5 }}i + \frac{2}{\sqrt{ 5 }}j }} >(i+2j+k) >\pa{\frac{\sqrt{ 3 }}{2} - \frac{1}{2}\pa{ \frac{1}{\sqrt{ 5 }}i + \frac{2}{\sqrt{ 5 }}j }} \\ >&= \frac{\sqrt{ 3 }}{2}(i+2j+k) + \frac{1}{2}\pa{ \frac{1}{\sqrt{ 5 }}i^{2} >+ \frac{2}{\sqrt{ 5 }}ij + \frac{1}{\sqrt{ 5 }}k >+ \frac{2}{\sqrt{ 5 }}ji >+ \frac{k}{\sqrt{ 5 }}j^{2} >+ \frac{2}{\sqrt{ 5 }} jk >} >q^{*} \\ > >&= \pa{ > >\frac{\sqrt{ 3 }}{2}i + \sqrt{ 3 }j + \frac{\sqrt{ 3 }}{2}k >- \frac{1}{2\sqrt{ 5 }}k >+ \frac{1}{\sqrt{ 5 }} >- \frac{1}{\sqrt{ 5 }}j - \frac{1}{\sqrt{ 5 }}k- \frac{2}{\sqrt{ 5 }i} >+\frac{1}{\sqrt{ 5 }} >}q^{*} \\ >&= \pa{ >\pa{ > >\pa{ -\frac{1}{2\sqrt{ 5 }} - \frac{2}{\sqrt{ 5 }} } >+ \frac{\sqrt{ 3 }}{2}- \frac{1}{\sqrt{ 5 }} }i >+ \pa{ \sqrt{ 3 } - \frac{1}{2\sqrt{ 5 }} }j >+ \frac{\sqrt{ 3 }}{2}k >} >\pa{ > >\frac{\sqrt{ 3 }}{2} >- \frac{1}{2\sqrt{ 5 }}i - \frac{1}{\sqrt{ 5 }}j > >} \cdots \\ >&= \text{who even knows anymore bro, give up and use a calculator 🥀} >\end{align}$ > >[!info] Relation to [[Rodrigues Formula]] >$\huge \begin{align} > >L(\vec v) &= >\pa{\cos \frac{\theta}{2}+ \hat{n} \sin \frac{\theta}{2}}\vec v \pa{ >\cos \frac{\theta}{2} - \hat n \sin \frac{\theta}{2} >} \\ > >&=\vec v \cos^{2} \frac{\theta}{2} - >\vec v \hat n \sin \frac{\theta}{2} \cos \frac{\theta}{2} + >\hat{n} \vec v^{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2} >- >\hat{n}^{2}\vec v\sin^{2 } \frac{\theta}{2} \\ > >&= > > >\pa{ >\cos^{2} \frac{\theta}{2} - \sin ^{2} \frac{\theta}{2} >}\vec v >+ 2\pa{\hat{n} \times \vec v} \sin \frac{\theta}{2} \cos \frac{\theta}{2} >\\ >&= \vec v \cos \theta + \pa{\hat{n} \times \vec v} \sin \theta - \pa{\cdots}\pa{ >\hat{n} \times \hat{n} \times \vec v >} >\end{align}$