A sub category of row echelon form with every leading term equal to 1, and every term above it equal to 0.
$\huge\rowechelon{
1&0&0&a\\
0&1&0&b\\
0&0&1&c\\
}$
Finding a [[Reduced Row Echelon Form|RREF]] similar to the augmented matrix of a [[System of Linear Equations#Solving Linear Equations|System of Linear Equations]] will allow you to solve for $x,y,z$ (or however many variables are in the system of equations).
All [[Equivalent]] [[Augmented Matrix|Augmented Matrices]] have a single [[Reduced Row Echelon Form|RREF]].
### Special Cases
#### Under-determined
A [[System of Linear Equations]] with less equations than unknown [[Variable|Variables]] is [[Under-determined]], and must have either [[#Infinite Solutions]], [[#No Solutions]], or *multiple* solutions.
#### Infinite Solutions
In the case that the [[Reduced Row Echelon Form]] of an [[Augmented Matrix]] ends up with rows that are all zeroes, for every all zero row you introduce a [[Free Parameter]], and your [[Augmented Matrix]] has an infinite number of solutions.
>[!example]- Free Parameter [[Reduced Row Echelon Form|RREF]]
>$
>\begin{align}
>\augmented{cccc|c} {
>1&0&1&1&1\\
>0&1&2&1&2\\
>0&0&0&0&0\\
>0&0&0&0&0
>} &\sim
>\begin{cases}
>x_{1}+x_{3}+x_{4}&=1\\
>x_{2} +2x_{3}+x_{4} &= 2\\
>0 &= 0\\
>0 &= 0
>\end{cases}\\
>& \sim
>\begin{cases}
>x_{1}=1-x_{3}-x_{4}\\
>x_{2} = 2-2x_{3}-x_{4}
>\end{cases}\\
>&\sim
>
>\boxed{
>\begin{cases}
>x_{1}=1-t-s\\
>x_{2}=2-2t-s\\
>x_{3}=t\\
>x4=s
>\end{cases}
>}
>\end{align}
>$
#### No Solutions
If the [[Reduced Row Echelon Form]] of an [[Augmented Matrix]] has a row where the leading term is at the very right, that means the [[System of Linear Equations]] is [[Inconsistent]] and has *no solutions*.
>[!example]- [[Reduced Row Echelon Form|RREF]] With no Solutions
>$\begin{align}
>\augmented{ccc|c}{
>1&-2&3&-\frac{1}{2} \\
>0&0&0 & \frac{3}{2} \\
>0&0&0&1
>}
>\implies
>\boxed{0=1}
>\end{align}$