>[!info] Symmetry
>$A^{\intercal}= A$
### Determinant
$\huge \det A = -1 \iff A \in M_{2\times 2}, \Rn2$
$\huge \det A = 1 \iff A \in M_{3\times 3}, \Rn3$
Reflections will switch *parity*
### Inverse
$\huge A^{-1} = A$
## Vector Form
Through a line in vector form ($\Rn2, \Rn3$).
$\huge A
= -I + \frac{2}{\norms{\vec v}^{2}}\vec v v ^{\intercal}
= -I + 2\hat v \hat v ^{\intercal}
$
## Normal Form
Through a line in $\Rn2$ or a plane in $\Rn3$.
$\huge A =
I - \frac{2}{\norms{\vec n}^{2}} \vec n n^\intercal =
I - 2 \hat n \hat n^\intercal
$