The Rodrigues Formula is one for generating a [[Matrix]] [[Function|Transformation]] representing [[Rotation Transformation|Rotation]] about an arbitrary [[Axis]] $\hat{k}$ in $\R^3$. $\huge \begin{align} R &= I + \Lambda \hat{k} \sin\theta + (1 - \cos \theta)(\Lambda \hat{a})^{2} \\ \end{align} $ Where $\Lambda$ denotes the [[Cross Product Matrix]]. $\huge \begin{align} \Lambda_{}\vec u &= \mat{ 0 & -u_{z} & u_{y}\\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 } \end{align}$ Note that this [[Function|Transformation]] constitutes an [[Orthogonal Matrix]].