#### [[Determinant]]
$\huge \det \pa{M_{R\theta}} = 1$
>[!info] Symmetric
> $\huge \pa{M_{R\theta}}^{\intercal} \ne M_{R\theta}$
>
> $\huge \pa{M_{R\theta}}^{\intercal} \ne M_{R\theta} \iff \theta \in n\pi$
## 2D
Rotating around the origin
$\huge \begin{align*}
R_{\theta}&= \mat{ \cos\theta & -\sin\theta \\ \sin\theta & \cos \theta}
\end{align*}$
#### [[Inverse Matrices|Inverse]]
$\huge \begin{align*}
R_{\theta}^{-1}&= \mat{ \cos \theta & \sin\theta \\ -\sin\theta & \cos \theta}
\end{align*}$
### 3D
Rotating around a basis vector
$\huge R_\ang{\theta,x} \mat{ 1 & 0 & 0 \\
0 & \cos\theta & -\sin\theta \\
0 & \sin \theta & \cos \theta
}$
$\huge R_\ang{\theta,y} \mat{
\cos \theta &0& \sin \theta\\
0&1&0\\
-\sin \theta &0&\cos\theta\\
}$
$\huge R_\ang{\theta,z} \mat{
\cos \theta & -\sin \theta&0 \\
\sin \theta & \cos \theta &0 \\
0&0&1 \\
}$