A sequence is a [[Function]] $S(n) : \Z^+\to S$, where $S$ is a [[Set]].
The common ways to denoted a sequence is:
$\huge
\begin{align}
S &= \set{
a_{1},
a_{2},
a_{3},
\cdots } \\
S(n) &= a_{n} \\
S &= \set{a_{n}}_{n=1}^{\infty} \\
S &= \set{f_{S}(x_{n})}_{n=1}^{\infty}
\end{align}
$
>[!example]-
A Sequence can be a list of numbers in a specific order.
>[!example]-
>$\huge \begin{align}
>S &= \left\{
>\frac{n-1}{n+1}
>\right\}_{0}^{\infty}
>\\&=
>
>\left\{
>0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \cdots
>\right\}
>
>\end{align} $
### Solving for a closed form [[Function]] of a [[Sequence]]
>[!example]
Find a formula for the given [[Sequence]]:
$\huge
S = \left\{
34, 31, 28, 25, 22, \cdots
\right\}
$
$\huge \begin{align}
a_{n+1} &= a_{n} - 3 \\
a_{0} &= 34 \\
\\
a_{n+3} &= {a_{n+2} }- 3 \\
&= {a_{n+1} - 3}- 3 \\ \\
a_{n+3} &=
a_{n} -
\underbrace{ 3 - 3- 3}_{3 \text{ times}} \\ \\
\\
a_{{n+i}} &= a_{n} + \sum^{i} -3
\\&= a_{n} -3i \\
a_{0+i} &= a_{0} - 3i\\
a_{i} &= 34 - 3i\\
\\
S(n)=
a_{n} &= \boxed{
34 - 3n}\\
\end{align}
$