A sequence is an [[Ordered Set|ordered set]] generated by discrete [[Function|function]] $f$.
The common ways to denoted a sequence is:
$\huge
\begin{align}
S &= \set{
a_{1},
a_{2},
a_{3},
\cdots } \\
S(n) &= a_{n} \\
S &= \set{a_{n}}_{n=1}^{\infty} \\
S &= \set{f_{S}(x_{n})}_{n=1}^{\infty}
\end{align}
$
>[!example] Example of an infinite sequence
>$\huge \begin{align}
>S &= \left\{
>\frac{n-1}{n+1}
>\right\}_{0}^{\infty}
>\\&=
>
>\left\{
>0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \cdots
>\right\}
>
>\end{align} $
>[!example] Solving for a closed form function of a sequence
>Find a formula for the given [[Sequence]]:
>$\huge
>S = \left\{
>34, 31, 28, 25, 22, \cdots
>\right\}
>$
>
>$\huge \begin{align}
>a_{n+1} &= a_{n} - 3 \\
>a_{0} &= 34 \\
>\\
>
>a_{n+3} &= {a_{n+2} }- 3 \\
> &= {a_{n+1} - 3}- 3 \\ \\
>a_{n+3} &=
> a_{n} -
>\underbrace{ 3 - 3- 3}_{3 \text{ times}} \\ \\
>\\
>
>a_{{n+i}} &= a_{n} + \sum^{i} -3
>\\&= a_{n} -3i \\
>
>a_{0+i} &= a_{0} - 3i\\
>a_{i} &= 34 - 3i\\
>\\
>
>
>S(n)=
>a_{n} &= \boxed{
>34 - 3n}\\
>\end{align}
>$