>[!tip] Fun Fact: This is in [[Minecraft]]
Parallel line $\vec n^\intercal \vec x =0$ with shear factor $\vec v$
$\huge I+ \frac{1}{\norms{n}}\vec v \vec n ^\intercal
= I+ \vec v \hat n ^\intercal
$
*or*
$\huge
I+ \frac{1}{\vec n^{\intercal} \vec P} \vector{PQ} \vec n^\intercal
\iff \hat n \cdot \vector{PQ} = 0
$
>[!info] Symmetry
>This transformation is *not* symmetrical
#### Determinant
$ \huge \det A = 1$
#### Inverse
$\huge I - \frac{1}{\norms{n}}\vec v \vec n ^\intercal
= I - \vec v \hat n ^\intercal
$
$\huge
I+ \frac{1}{\vec n^{\intercal} \vec Q} \vector{PQ} \vec n^{\intercal}\iff \hat n \cdot \vector{PQ} = 0
$
>[!example]
>$\let T: \Rn2 \to \Rn2$ be the shear parallel to $l: 3x-y=0$ with shear factor $\mat{2\\6}$
>
>$\huge\begin{align*}
\vec n &= \mat{3\\-1}, \vec v = \mat{2\\6}\\
A&= I + \frac{1}{\sqrt{10}}\mat{2\\6}\mat{3&-1}\\
&= \frac{1}{\sqrt{10}}\mat{\sqrt{10} + 6 & -2 \\ 18 & \sqrt{10}- 6}
\end{align*}$