$ \huge A = U \Sigma V^{\intercal} $
$\large
\begin{align}
A \in M_{n\times m}\\
U &\in M_{n\times n} \\
\Sigma &\in M_{n\times m}\\
V^{\intercal} &\in M_{m\times m}
\end{align}
$
[[Singular Value Decomposition]] is that process of decomposing any [[Matrix]] into a [[Orthogonal Matrix|Rotation]] $V^\intercal$, [[Diagonal Matrix|Scale along the cardinal directions]] $\Sigma$, and another [[Rotation Transformation|Rotation]] $U$. Unlike [[Eigendecomposition]], [[Singular Value Decomposition]] can be applied to any $n\times m$ [[Matrix]].
Components:
- $U$ is an [[Orthogonal Matrix]] that consists of a [[Orthonormal Basis]] from the [[Eigenvector|Eigenvectors]] $AA^T$ ($AA^T$ is always [[Symmetric Matrix|Symmetric]] therefore its [[Eigenvector|Eigenvectors]] are always [[Orthogonal]]).
>[!example]- Example problem:
>
>
>![[../../06 Mind Dump/202504070917|202504070917]]