A [[Matrix|Matrix]] is [[Symmetric]] if it is equal to its own [[Matrix Transpose|Transpose]].
$\huge
A = A^\intercal
$
Another definition is a [[Matrix]] $A$ is [[Symmetric Matrix|Symmetric]] [[Bijective|if and only if]] there [[Existential Quantifier|Exists]] an [[Orthogonal]] [[Basis]] of [[Eigenvector|Eigenvectors]] of $A$.
### Properties
All [[Eigenvalue|Eigenvalues]] of $A$ are [[Real Numbers|Real Numbers]] (assuming $A$ is composed of [[Real Numbers|Real Numbers]]).
If $\vec v_{1},\vec v_{2}$ are [[Eigenvector|Eigenvectors]] of $A$, with respect to [[Eigenvalue|Eigenvalues]] $\lambda_{1} \neq \lambda_{2}$, then $\vec v_{1} \perp \vec v_{2}$.
$A$ is [[Eigendecomposition|Diagonalizable]] in the form $PDP^{-1}$, and $D$ will always be [[Symmetric Matrix|Symmetric]] as well.
There [[Existential Quantifier|Exists]] an [[Orthogonal Basis|Orthogonal Basis]] of $\R^n$ comprised of [[Eigenvector|Eigenvectors]] of $A$.
>[!example]
>Let $A \in M_{6 \times 6}$
>$\begin{align}
>\det(A-tI) &=
>\small
>(t-\lambda_{1})
>(t-\lambda_{2})
>(t-\lambda_{3})
>(t-\lambda_{4})
>(t-\lambda_{5})
>(t-\lambda_{6})\\
>\end{align}
>$
>
>$\begin{align}
>\lambda_{2}&=\lambda_3\\
>\lambda_{4} &= \lambda_{5}=\lambda_{6}\\
>\end{align}
>$
[[Geometric Multiplicity (LinAlg)|Geometric Multiplicity]] $=$ [[Geometric Multiplicity (LinAlg)|Algabraic Multiplicity]].
$\begin{matrix}
\text{\small Eigenvalues}&\lambda_{1} & \lambda_{2},\lambda_{3} & \lambda_{4},\lambda_{5},\lambda_{6} \\
&1 & 2 & 3 \\
\text{\small Eigenspaces}&E_{\lambda_{1}} & E_{\lambda_{2}} & E_{\lambda_{4}} \\ \\
\text{\small Basis}
&\set{\vec u_{1}} & \set{\vec u_{2}, \vec u_{3}} & \set{\vec u_{4}, \vec u_{5}, \vec u_{6}} \\
{
\small \begin{split} \\
& \text{Orthonormal}\\
&\text{Basis}
\end{split}
} &
\set{\vec w_{1}}
& \set{\vec w_{2}, \vec w_{3}} & \set{\vec w_{4}, \vec w_{5}, \vec w_{6}} \\
\end{matrix} $