## Even
>[!abstract] Thereom
>A function $f(x)$ is [[Even]] if $f(-x) = f(x)$ for all $x$ in the [[Domain]] of $f$.
>$\huge
>\int_{-a}^{a} f(x)\d x =
>2\int_{0}^{a} f(x)\d x
>$
### Proof
$\huge \begin{align}
\let f &: X \to X \\
\let a &\in X \\
f(x) &= f(-x) \\
\int_{-a}^{a}f(x)\d x &=
\int_{-a}^{0}f(x)\d x +
\int_{0}^{a}f(x)\d x \\
&=
\underbrace{\int_{-a}^{0}f(x)\d x}_{
u =-x, \d u = -\d{x}
} +
\int_{0}^{a}f(x)\d x \\
&=
\int_{(-(-a)}^{-0}-f(u)\d u +
\int_{0}^{a}f(x)\d x \\
&=
-\int_{a}^{0}f(u)\d u +
\int_{0}^{a}f(x)\d x \\
&=
\int_{0}^{a}f(u)\d u +
\int_{0}^{a}f(x)\d x \\
\let x &= u \\
\let du &= \d x \\
&=\int_{0}^{a}f(x)\d x +
\int_{0}^{a}f(x)\d x \\
&=
\boxed{2\int_{0}^{a}f(x)\d x} \\
\end{align}$
## Odd
>[!abstract] Thereom
>A function $f(x)$ is [[Odd]] if $f(-x) = -f(x)$ for all $x$ in the [[Domain]] of $f$.
>$\huge
>\int_{-a}^{a} f(x)\d x = 0
>$