*eg.* Applying a [[Function|Transformation]] to a whole [[Lines|line]], [[Planes|plane]], *etc*, *etc*.
$\huge \let T: \Rn n\to\Rn n$
#### Vector Form (Line or Plane)
$\huge \begin{align*}
l &: \vec x = P + t\vec v \\
T\pa{l} &= T\pa{P} + tT\pa{\vec v} \\
\end{align*}$
$\huge \begin{align*}
\alpha &: \vec x = P + t\vec v + s\vec u \\
T\pa{\alpha} &= T\pa{P} + tT\pa{\vec v} + sT\pa{\vec u} \\
\end{align*}$
#### [[Normal Vector|Normal]] Form
*You can’t use the same approach as before* because [[Linear Transformation]] preserve parallel lines but
*not orthogonality*.
>[!tip] A valid approach can be to convert normal form to vector form
$\huge\begin{align*}
l : n_{x}x + n_{y}y &= c \\
\vec n^{\intercal}\vec x &= c \\
\end{align*}$
To test if $\vec x$ is on $T(l)$:
$\huge\begin{align*}
T(l): \vec n ^{\intercal}\pa{\vec n^{\intercal} A^{-1}} \vec x &= c \\
\vec n ^{\intercal} A^{-1} &= \vec m ^{\intercal}\\
\pa{\vec n ^ {\intercal}A ^{-1}}^\intercal &= \vec m\\
\end{align*}$
>$\huge \vec m = \pa{A^{-1}}^{\intercal} \vec n $
>[!example]
>$\huge\begin{align*}
T&: \Rn3 \to \Rn3 \\
T&: \mat{x\\y\\z} \mapsto \mat{3x-y\\2y+z\\x+y+z} \\
\alpha &: x+2y-z=3\\
\end{align*}$
>$\huge\begin{align*}
P &\in \alpha\\
\vec n &\perp \alpha\\
\vec v &\parallel \alpha\\
\vec u &\parallel \alpha\\
\vec n &= \mat{1\\2\\-1}\\
P &= \mat{3\\0\\0} \\
\vec v &= \mat{2\\-1\\0}\\
\vec u &= \mat{1\\0\\1}\\
\alpha: \mat{x\\y\\z} &= \mat{3\\0\\0} + t\mat{2\\-1\\0} + s\mat{1\\0\\1}
\end{align*}$
>$\huge\begin{align*}
\vec m &= T(\vec u) \times \vec T(\vec v) \\
&= \mat{-5\\-11\\13} \\
T: P &\mapsto \mat{9\\0\\3}\\
6 &= 5(9) + 11(0) - 13(3) \\
T(\alpha)&: 5x+11y-13z = 6
\end{align*}$