Definite integrals for common trigonometric functions
> $\huge \begin{align}
\int \sin (x) \d{x} &= - \cos x + C \\
\int \cos (x)\d{x} &= \sin x + C \\
\int \sec^2(x) \d{x} &= \tan x + C \\
\int \tan(x) \d{x} &= \ln \left|\sec (x) \right| + C \\
\\
\int \frac{1}{\sqrt{1-x^2}} \d{x} &= \sin^{-1} + C \\
\int \frac{1}{1+x^2} \d{x} &= \tan^{-1} + C \\
\end{align}
$