An [[Improper Integrals|Improper Integral]] where one of the extents is [[Infinity]].
>[!example]
>$\huge
>\begin{align}
>\int_{0}^\infty e^{-x} \d x
>&= \lim_{t\to\infty} \int_{0}^{t}e^{-x} \d x \\
>&= \lim_{t\to\infty}
>-e^{-x}
>\big\rvert_{0}^{t}
>\d x \\
>&= \lim_{t\to\infty}
>\ba{
>-e^{-t} - \pa{-e^0}
>}\\
>&=
>\lim_{t\to\infty} \ba{ -e^{-t}}
>+ e^{0} \\
>&= 0
>+ e^{0} \\
>&= \boxed{1}
>\\
>\end{align}
>$
>[!example]
>$\huge
>\begin{align}
>\int_{1}^{\infty} \frac{1}{x^2+x}\d x &=
>\lim_{t\to\infty} \int_{1}^{t} \frac{1}{x^2+x}\d x \\
>&=
>\lim_{t\to\infty} \int_{1}^{t} \frac{1}{x(x+1)}\d x \\
>\\
>
>\frac{1}{x^2+x} &= \frac{A}{x} + \frac{B}{x+1}\\
>
>
>
>1&= A(x+1) + Bx \\
>1&= Ax + B(x+1) \\
>\\
>0 &= A - B \\
>A &= 1, B = -1 \\
>
>\\ &=
>\lim_{t\to\infty} \int_{1}^{t} \pa{
>\frac{1}{x} - \frac{1}{x+1}}
>\d x \\
>
>\\ &=
>\lim_{t\to\infty}
>
>\ln|x| - \ln|x+1| \big\rvert_{1}^t
>\\&=
>\lim_{t\to\infty}
>\pa{\ln|t| - \ln|t+1| } -
>\pa{\ln|1| - \ln|2| }
>\\&=
>\lim_{t\to\infty}
>\ln\pa{\frac{t}{t+1}}
> +\ln 2
> \\&=
>\ln 1 + \ln 2
>\\&= \boxed{\ln 2}
>\end{align} $