Addition on [[Vector|Vectors]] are [[Linear]]:
#### Addition
$ \huge \let \vec u, \vec v \in \R^{n}$
$\huge \begin{align}
\vec u + \vec v =
\mat{u_{1}\\u_{2} \\\vdots\\u_{n}}
+\mat{v_{1}\\v_{2} \\\vdots\\v_{n}}
=
\mat{u_{1}+v_{1}\\u_{2}+v_{2} \\\vdots\\u_{n}+v_{n }}
\end{align}$
#### Scaling / Multiplication
For notation, *never* write a symbol, always put them adjacent, as a $\times$ implies the [[../../02 Areas/Math/Cross Product|Cross Product]] and $\cdot$ implies the [[../../02 Areas/Math/Dot Product|Dot Product]].
$\huge\begin{align*}
\vec{v} &= \mat{4\\-1} \\
2\vec{v} \cdot 2 &= \mat{4\cdot2\\-1\cdot2}
\end{align*}
$
[[Scalar]] multiplication with multiply the scalar with each component of the vector, resulting in *the length of the vector being scaled*.
For any scalar, $k$, and any vector $\vec{v}$,
$k\vec{v}$ is vector in the *same* ($k^+$) or *opposite* ($k^-$).
*Distributive Property* Applies
$\huge{ k(\vec{v} + \vec{u} ) = k\vec{v}+k\vec{u} } $