$\huge
\begin{align}
\Delta x &= (x_{2}-x_{1}) -L \\
E_{m_{1}s} &= +\Delta x k \\
E_{m_{2}s} &= -\Delta x k \\
\end{align}
$
$\ha{
m_{1} \ddot x_{1}(t) - k \Delta x &= 0\\
-m_{1} m_{2} \ddot x_{1}(t) + km_{2} \Delta x &= 0 \\
\\
m_{2} \ddot x_{2}(t) + k \Delta x &= 0\\
-m_{1} m_{2} \ddot x_{2}(t) + km_{m} \Delta x &= 0 \\
\\
m_{1}m_{2}( \ddot x_{2} -\ddot x_{1}) + (m_{1}+m_{2})k\Delta x &= 0\\
}$
$ \huge \begin{align}
\mathcal D^2\{ x_{2} - x_{1} \} &= \mathcal D^2 (\Delta x - L) \\
0 &= \mathcal D^2\left\{ \Delta x \right\} - \mathcal D^2\left\{ L \right\} \\
m_{1}m_{2} \mathcal D^2\{\Delta x\} + (m_{1}+m_{2})k \Delta x &= 0 \\
\mathcal D^2 \Delta x + \frac{k}{ \frac{m_{1}m_{2}}{m_{1}+m_{2}} } \Delta x &= 0 \\
M_{r} &= \frac{m_{1}m_{2}}{m_{1}+m_{2}} \\
\end{align}$