The rate of cooling $T'$ of an object is proportional to the different of the temperature of the object and the temperature of the surroundings.
### [[../Math/Differential Equations|Differential Equation]] Form
>[!seealso] AKA: The [[Heat Equation]]
$\huge
\frac{\partial{T}}{\partial t} \propto
\frac{\partial^2{T}}{\partial x^2}
$
### Simplified Form
>[!tip] This form only works if the ambient tempature $T_\alpha$ is *constant*.
$\huge
\begin{align}
T&=(T_{0} - T_{\alpha})e^{kt} + T_{\alpha} \\
\\
T(t) &= \op{lerp}\pa{T_{\alpha}, T_{0}, e^{kt}}
\end{align}
$
#### Derivation
Let $T(t)$ be the temperature of an object after $t$ seconds, $T_\alpha$ be the *constant* ambient temperature, an $T_0$ be the initial temperature of the object.
$\huge
\begin{align}
\newcommand{\temp}[0]{ {\color{pink}T} }
\newcommand{\dtemp}[0]{ {\color{pink}\d T} }
\newcommand{\tempz}[0]{ {\color{pink}T_{0}} }
\newcommand{\atemp}[0]{ {\color{skyblue}T_{\alpha}} }
\newcommand{\time}[0]{ {\color{white}t} }
\newcommand{\dtime}[0]{ {\color{white}\d t} }
\frac{\dtemp}{\dtime} &\propto \pa{\temp - \atemp} \\
\frac{\dtemp}{\dtime} &= k\pa{\temp - \atemp} \\
\frac{\dtemp}{\temp - \atemp} &= k\dtime \\
\int \frac{\dtemp}{\temp - \atemp} &= \int k\dtime \\
\ln \left | \temp - \atemp \right| &= k\time + C \\
e^{\ln \left | \temp-\atemp \right| } &= e^{k\time + C} \\
\temp - \atemp &= e^{k\time + C} \\
\let A &= e^{C} \\
\temp - \atemp &= Ae^{k\time} \\
\temp &= Ae^{k\time} + \atemp \\
\\
\temp(0) &= \tempz \\
&=Ae^{0} + \atemp \\
\tempz - \atemp &= A \\
\\ \temp &=(\tempz - \atemp)e^{k\time} + \atemp \\
\temp(\time) &= \op{lerp}\pa{\atemp, \tempz, e^{k\time}}
\end{align}$