![[Waventerference.gif|invert_B]]
A [[Standing Wave]] is a type of [[Wave]] that appears to be not be oscillating in the [[Spatial Domain]].
### Derivation from the [[Superposition Principle]] of two [[Travelling Wave|travelling waves]]
Suppose we have two [[Travelling Wave|Travelling waves]], $D_1, D_2$ who have the same [[Wavenumber]] and negated [[Angular Frequency|angular frequencies]]:
$\huge \begin{align}
D_{1}(x,t) &= A\sin(kx-\omega t) \\
D_{2}(x,t) &= A\sin(kx+\omega t) \\
\end{align}$
The [[Superposition Principle]] of the waves are:
$\huge \begin{align}
D_{1}+D_{2} &= A\pa{
\sin(kx-\omega t) +
\sin(kx+\omega t)
}
\end{align} $
Using the trig identity:
$\begin{align}
\sin \theta_{1} + \sin \theta_{1} &= 2\sin \pa{\frac{1}{2}(\theta_{1}+\theta_{2})}
\cos \pa{\frac{1}{2}(\theta_{1}-\theta_{2})} \\
D(x,t) &= 2A
\sin \pa{ \frac{1}{2}(kx-\omega t + kx + \omega t) }
\cos \pa{ \frac{1}{2}(kx-\omega t - kx - \omega t) } \\
&= 2A\sin(kx) \cos( -\omega t )
\end{align}$
$\huge D(x,t) = 2A\sin(kx) \cos( -\omega t ) $
Note that this is identicial to a [[Spatial Wave]] with a constant [[Phase]] that is simply being scaled in a sinusoidal pattern throughout the [[Time Domain]].
### Standing Wave on a fixed length string
Given a standing wave of a string with range $x\in [0, L]$.
$\huge
\begin{align}
k &= \frac{h \pi}{L} \\
\lambda &= \frac{2L}{h} \\
f &= \frac{c}{\lambda} = \frac{hc}{2L}
\end{align}
$
Where $h\in \Z^{+}$ and represents the $h$-th [[Harmonic]].
![[Standing Wave Harmonic.gif|invert_Sepia]]
The point on the string that reaches the highest point / oscillates with the largest amplitude is called an [[Anti-Node]], while a [[02 Areas/Physics/Node|Node]] is a point on the string that could oscillate but doesnt.