In this case where the driving force is also some periodic function such as:
$\huge \begin{align}
F_{\text{ext}} &= F_{0}\cos (\omega t)\\
\end{align}$
The [[../Math/Differential Equations|Differential Equation]] for the system would be:
$\huge
\begin{align}
mx'' &= -k\vec x - b \vec x' + F_{0}\cos(\omega t)\\
\vec x'' + \frac{b}{m}\vec x' + \frac{k}{m} \vec x &=\frac{F_{0}}{m} \cos(\omega t)
\end{align} $
Note that this is the same as before except the equation equals the force divided by the mass instead of 0.
$\huge
\begin{align}
\vec x(t) &= A_{0}\sin (\omega t + \phi_{0}) \\
A_{0} &= \frac{F_{0}}{m}\pa{(\omega^2 - \omega_{0}^2)^2 + \frac{b^2\omega^2}{m^2}}^{-1/2} \\
\phi_{0} &= \arctan\pa{ \frac{\omega_{0}^2-\omega^2}{\omega \frac{b}{m}} }
\end{align}
$
Where $\omega_{0}$ is the [[Natural Frequency]] of the system and $\omega$ is the [[Frequency]] of the driving force $\vec F_{\text{ext}}$ and $\phi_{0}$ is the phase offset of the system.
When discussing these problems we use a measure calleed $Q$ ([[Q-Factor]])
### Energy
$\huge\begin{align}
E_{0} &= \frac{1}{2}k A_{0}^2 = \frac{1}{2} m \omega^2A_{0}^2\\
E(t) &= E_{0}e^{ -\frac{t}{\tau} } \\
E'(t) &= -\tau^{-1} E_{0} e^{-\frac{t}{\tau}}\\
&=-\frac{E(t)}{\tau}
\end{align}
$
$\huge \begin{align}
\deriv E t &= -\frac{E}{\tau} = \deriv E \tau = \frac{\Delta E}{T} \\
\frac{\Delta E}{E} &= -\frac{2\pi}{Q} \\
T &= \frac{2\pi}{w_{0}}\\
Q &= \omega_{0} \tau
\end{align}$
Where $Q$ is the [[Q-Factor]].