Let $U \subset \R^5$ be the [[../02 Areas/Math/Linear Subspace|Linear Subspace]]:
$
U = \op{span}\pa{
\mat{1\\0\\-1\\3\\1},
\mat{2\\1\\2\\0\\2},
\mat{0\\1\\3\\1\\0}}
$
Write an algebraic specification of $U$.
$
\let A = \mat{
1&2&0 \\
0&1& 1 \\
-1&2&3 \\
3&0&1 \\
1&2&0 }
$
$ U = \op{col}(A) $
$\begin{align}
& \augmented{ccc|c}{
1&2&0 &b_{1}\\
0&1& 1& b_{2}\\
-1&2&3&b_{3} \\
3&0&1& b_{4}\\
1&2&0& b_{5}} \\
\cdots \sim &
\mat{
1 & 2 & 1 & b_{1} \\
0&1&1 & b_{2} \\
0&0&-1 & b_{1}-4b_{2}+b_{3} \\
0&0&0 & 4b_{1}-22b_{2}+7b_{3}+b_{4} \\
0&0&0& -b_{1}+b_{5}
}
\end{align} $
$\huge
U = \left\{ \vec b \in \R^3 \left| \,\,
\begin{split}
4b_{1}-22b_{2}+7b_{3}+b_{4} &= 0 \\
-b_{1}+b_{5} &=0
\end{split}
\right.
\right\}
$
$\huge
\op{\mathrm{Im}}(T) = \set{ \vec b \in \R^3 \mid -b_{1}+3b_{2}+b_{3} = 0 }
$