Let $T: \R^4 \to \R^2$
$ T: \mat{x_{1}\\x_{2}\\x_{3}\\x_{4}} \mapsto \mat{x_{1}-x_{2}+3x_{4}\\-1x_{1}+x_{2}+x_{3}+x_{4}} $
- Write a [[Algebraic Specification]] of the [[../02 Areas/Math/Kernel|Kernel]] of the [[../02 Areas/Math/Function|Transformation]] $T$
- Write a [[../02 Areas/Math/Set|Set]] of [[Vector|Vectors]] that [[../02 Areas/Math/Span|Span]] $\op{ker}(T)$
$ \let A = \mat{ 1&-1&0&3\\=1&1&1&1 } $
$
\begin{align}
\op{ker}(T) = \op{Nul}(A) = \left\{ \vec x \in \R^n
\left|
T(\vec x) =0
\right.
\right\}
\end{align}
$
$
\begin{align}
&= \left\{
\vec x \in \R^4 \left|
A\vec x = \vec 0
\right. \right\}\\
&=
\boxed{
\left\{
\vec x \in \R^4 \left|
\,\begin{split}
x_{1}-x_{2}+3x_{4}&=0\\
-x_{1}+x_{2}+x_{3}+x_{4}&=0
\end{split}
\right. \right\}
}\\
\end{align}
$