With some [[../02 Areas/Math/Vector|Vector]] $\vec b$ that is not in some [[../02 Areas/Math/Linear Subspace|Linear Subspace]] $U$, what is the closest vector to $\vec b$, that is inside $U$ ($\vec b_U$).
Let $\vec b_\perp$ be a the vector from $\vec b_U$ to $\vec b$ that is [[../02 Areas/Math/Orthogonal|Orthogonal]] to $U$.
$\huge \begin{align}
\vec b &= \vec b_{U} + \vec b_{\perp}\\
\vec b_{U} &\in U \\
\vec b_{\perp} &\in U^\perp \\
\end{align}
$
Suppose that $U$ has a basis $\set{\vec u_{1}, \vec u_{2}, \dots}$.
$ U = \op{Col}\underbrace{\mat{\vec u_{1} & \dots \vec u_{k}}}_{{A}}$
$\begin{align}
U^\perp &= \op{Nul}\left( A^\intercal \right) \\
A^\intercal \vec b &= A^\intercal(\vec b_{U} + \vec b_{\perp}) \\
&= A^\intercal \vec b_{U} + A^\intercal \vec b_{\perp \ll a}\\
&= A^\intercal \vec b_{\perp}
\end{align}
$
$\begin{align}
\vec b_{U} &\in \op{Col}{(A)}\\
\let \vec x \in \R^k&:
\vec b_{U} = A\vec x \\
A^\intercal \vec b &= A^\intercal \vec b_{U} \\
&= \left( A^\intercal A\right)\vec x\\
{\pa{A^\intercal A}^{-1}} A^\intercal \vec b &=
{\pa{A^\intercal A}^{-1}}
\left( A^\intercal A\right)\vec x\\
\vec x&= \left( A^\intercal A \right)^{-1}A^\intercal \vec b \\
\vec b_{U} &= A\pa{A^\intercal A}^{-1} A^{\intercal} \vec b
\end{align}$