Let $U=\op{span}\pa{\mat{1\\-1\\2}, \mat{1\\0\\3}}$
$\vec b = \mat{1\\4\\1}$
Find $\vec b_U \in U$ such that $\lvert \lvert \vec b - \vec b_{U} \rvert \rvert$ is minimized.
$
\begin{align}
A &= \mat {1&1\\-1&0\\2&3}\\
\mathcal B &= \left\{
\mat{1\\-1\\2}, \mat{1\\0\\3}
\right\}\\
\vec b_{U} &= \mat{x_{1}\\x_{2}}_{\mathcal B}
\end{align}
$
$\begin{align}
\vec b_{U}&= \mat{1&1\\-1&0\\2&3}\mat{x_{1}\\x_{2}} \\
\vec b &= \vec b_{U} + \vec b_{\perp} \\
A^\intercal \vec b &= A^\intercal A \vec x\\
\end{align}$