Review: [[../02 Areas/Math/Barycentric Coordinates|Barycentric Coordinates]]
Input: $P, Q, R$ (ordered) [[Vertex|Vertices]] of a [[../02 Areas/Computer Science/Non-Degenerate|Non-Degenerate]] [[Triangle]].
Any point $I$ in the plane of $\triangle PQR$ can be written uniquely in the form:
$\large I = \lambda P + \mu Q + \nu R $
where
$\large \lambda + \mu + \nu = 1 $
If $v_{p}, v_{q},v_{r}$ are attribute values assigned to [[Vertex|Vertices]] $P,Q,R$ then the linear interpolation at $I$ is:
$\large v_{I} = \lambda v_{p} + \mu v_{Q}+\nu v_{R} $
---
Example:
$ \large
\begin{matrix}
&P =(4,7) &Q=(94,47)& R=(24, 67) \\
&v_{P} =-7 &v_{q}=63 &v_{r}=-17
\end{matrix}
$
The [[../02 Areas/Math/Barycentric Coordinates|Barycentric Coordinate Functions]]:
$\large \begin{align}
\mu&= \frac{3x-y-5}{230} \\
\nu&= \frac{3x-y-5}{230} \\
\lambda &= 1-\mu - \nu
\end{align} $
Find the [[Linear Interpolation|linearly interpolated value]] at $I=(55,45)$
$\large\begin{matrix}
&\mu(I) &= \frac{3(55)-45-5}{230} = &0.5\\
&\nu(I) &= \frac{-4(55)+9(45)-5}{460} = &0.3\\
&\lambda(I) &= 1-0.5-0.3 =&0.2
\end{matrix}$
Therefore,
$\begin{align}
v_{I} &= \lambda_{I}v_{P}+\mu_{I}v_{Q}+\nu_{I}v_{R}\\
&= (0.2)(-7)+(0.5)(163)+(0.3)(-17)
\end{align}$