$
A=\mat{
0&-1&2\\
-1&0&-2\\
2&-2&3
}
$
$A$ is a [[../02 Areas/Math/Symmetric Matrix|Symmetric Matrix]]
$
\begin{align}
\det(A-tI) &=
\mat{
-t & -1 & 2 \\
-1 & -t & -2
\\ 2 & -2&3-t
}
\\
&= -t^3 + 3t^2 + 9t + 5
\end{align}
$
$\begin{align}
t+1\overline{) t^3 + 3t^2 + 9t +5}
&=
(-t^2 + 4t+5)(t+1) \\
-t^2 + 4t+5 &= 0 \\
t&= \set{
-1,
-5
}\\
0&= (t-5)(t+1)(t+1)\\
\end{align} $
$ \begin{align}
&\lambda_{1}=5& &\lambda_{2}=1 & &\lambda_{3} = 1
\end{align} $
$
\begin{align}
\dim E_{5} &= 1\\
\dim E_{-1} &= 2
\end{align}
$
$\begin{align}
E_{5} &= \op{Nul}\mat{
-5&-1&2\\
-1&-5&-2
\\2&-2&-2
}\\
&\sim
\augmented{ccc|c}{
-5&-1&2&0\\
-1&-5&-2&0
\\2&-2&-2&0
}\\
&\sim
\begin{cases}
x_{1}&= \frac{1}{2} t \\
x_{2}&= -\frac{1}{2}t \\
x_{3} &= t
\end{cases}\\
\vec x &= t\mat{\frac{1}{2}\\-\frac{1}{2}\\1}
\end{align}
$
$ \begin{align}
E_{-1} &= \op{Nul}\mat{
1&-1&2\\
-1&1&-2\\
2&-2&4
}\\
&\sim \augmented{ccc|c}{
1&-1&2&0\\
-1&1&-2&0\\
2&-2&4&0
}
\\&\sim
\augmented{ccc|c}{
1&-1&2&0\\
0&0&0&0\\
0&0&0&0
}\\
&\sim \begin{cases}
x_{1}= t-2s\\
x_{2}=t\\
x_{3}=s
\end{cases}\\
\vec x &= t\mat{1\\1\\0} + s\mat{-2\\0\\1}
\end{align}
$
$\begin{align}
\vec u_{1} &= \mat{\frac{1}{2}\\-\frac{1}{2}\\1} \\
\vec u_{2} &= \mat{1\\1\\0} \\
\vec u_{3} &= \mat{-2\\0\\1}
\end{align}
$
$
\begin{align}
\vec v_{2} &= \vec u_{2} = \mat{1\\1\\0}\\
\vec v_{3} &= \vec u_{3}- \frac{{\vec v_{2}^\intercal \vec u }}{\vec v_{2}^\intercal \vec v_{2}} \vec v_{2}
=\mat{
-1\\1\\1
}\\
\mathcal B_{E_{-1}} &= \left\{
\mat{1\\1\\0},\mat{-1\\1\\1}
\right\}\\
\end{align}
$
$
\begin{align}
\end{align}
$